在JAVA中实现二叉树结构
*
* 讲解:
* 二个方法函数,一个寻觅关键字--searchkey 另一个是插入一个结点:insertTree
* 另外这是一个完全的先序遍历二叉树的语法。先根结点,再左结点,如无再右结点,
* 如此递归至搜索完毕。
*
*/ public class
BinaryTreeTest {
private BinaryTree root = null;
public BinaryTreeTest() {
init();
}
/**
* 初始化给定数据的二叉树结构
*
*/
private void init() {
int data[] = { 12,
11, 34, 45, 67, 38, 56, 43, 22, 8 };
root = new BinaryTree(data[0]);
System.out.println("二
叉树的中的数据结构:");
System.out.println("------------------------------------");
System.out.println(data[0] + ":root");
for (int i = 1; i data.length; i++) {
System.out.print(data
+ ":");
root.insertTree(root, data);
}
System.out.println("------------------------------------");
}
public void serach(int key)
{
if (searchkey(root, key)) {
System.out.println("找到了:" + key);
} else {
System.out.println("没有找到:" + key);
}
}
private boolean searchkey(BinaryTree root,戈尔本 int key) {
if (root == null) {
return false;
} else if (root.data == key) {
return true;
} else if (key = root.data) {
return searchkey(root.rightpoiter, key);
}
return searchkey(root.leftpoiter, key);
}
class BinaryTree {
int data;
BinaryTree leftpoiter;
BinaryTree rightpoiter;
BinaryTree(int data) {
this.data = data;
leftpoiter = null;
rightpoiter = null;
}
private void insertTree(BinaryTree root, int data) {
if (data = root.data) {
if (root.rightpoiter == null) {
System.out.println(" - new rightpoiter");
root.rightpoiter = new BinaryTree(data);
} else {
System.out.print(" - rightpoiter");
insertTree(root.rightpoiter, data);
}
} else {
if (root.leftpoiter == null) {
System.out.println(" - new leftpoiter");
root.leftpoiter = new BinaryTree(data);
} else {
System.out.print(" - leftpoiter");
insertTree(root.leftpoiter, data);
}
}
}
}
public static void main(String
args[]) {
BinaryTreeTest b = new BinaryTreeTest();
int key = 8; //key:任意数值
b.serach(key); //到二叉树中查找
}
}
运转结果:
C:\javajava BinaryTreeTest
二叉树的中的数据结构:
------------------------------------
12:root
11: - new leftpoiter
34: - new rightpoiter
45: - rightpoiter - new rightpoiter
67: - rightpoiter - rightpoiter - new rightpoiter
38: - rightpoiter - rightpoiter - new leftpoiter
56: - rightpoiter - rightpoiter - rightpoiter - new
leftpoiter
43: - rightpoiter - rightpoiter - leftpoiter - new
rightpoiter
22: - rightpoiter - new leftpoiter
8: - leftpoiter - new leftpoiter------------------------------------
找到了:8